Catalytic [2+2+1] synthesis of pyrroles from alkynes and diazines via Ti^{II}/Ti^{IV} redox catalysis

Gilbert, Z. W.; Hue, R. J.; Tonks, I. A. *Nat. Chem.* **2015**, DOI: 10.1038/NCHEM.2386

John Milligan Current Literature Wipf Group Meeting- December 19, 2015

Earth abundant transition metals in catalysis: a hot topic

Earth abundant transition metals in catalysis: a hot topic

Ti: Redox neutral catalysis

- Ti is oxophilic; the majority of Ti-mediated transformations are redox-neutral
- Example: the Bergman hydroamination mechanism

The Kulinkovich reaction: a Ti redox active process

Can oxidative C-N bond formation be mediated by Ti to make pyrroles?

Previous work: Stoichiometric oxidative pyrrole formation with Ti

Tonks, I. A.; Meier, J. C.; Bercaw, J. E. Organometallics 2013, 32, 3451-3457

Previous work: Stoichiometric oxidative pyrrole formation with Ti

8

Tonks, I. A.; Meier, J. C.; Bercaw, J. E. *Organometallics* **2013**, *32*, 3451-3457

This work: Creating a Ti catalytic cycle

Initial result

Conclusions:

- Azobenzene can turn over the cycle to oxidize Ti
- The [2+2+1] and hydroamination are competing and may share a common intermediate
- The trimerization product (arene) sugguests Ti^{II} is involved

Catalyst effect

Mechanism

Mechanism: selectivity

Crystal structure: evidence for Ti^{IV}

Disporportionation

Possible mechanisms:

Disproportionation mechanism

No crossover product when TolN=NTol is added, thus no dissociation

Substrate scope

Tethered alkynes

Tethered alkynes

Enyne substrate

Asymmetric alkynes: Regioselectivity

13:100:13 (36% combined)

Ph

*n-*Bu

Asymmetric alkynes: Regioselectivity

45:100:77 (60% combined)

Regioselectivity rationale

Unselective (4, 5 and 6) substrates A and B mixture/formation reversible Second insertion unselective

Semi-selective (5 and 6) substrates Mixture of metallacycles A and B k_{AC} disfavoured

Selective (5 only) substrates Steric control Metallacycle B dominates

Diazo scope

`N^{-^}N.

71%

 $Ph N^{-N} Ph$

 NR

Conclusion

- A unique [2+2+1] Ti-mediated pyrrole synthesis was developed
- Mechanistic experiments prove a Ti(II)/Ti(IV) cycle involving diazo activiation
- Future directions include exploring ligands on Ti to enable catalyst controlled regioselectivity